

WWW.MATERIAUX2018.FR

Electrodéposition et caractérisations optiques de nanofils de Tellure monocristallins

<u>Alexandre Zimmer^{1,2}, Sophie Legeai¹, Laura Thiebaud¹, Laurent Broch³ et Nicolas Stein¹</u>

¹ Université de Lorraine, CNRS, IJL, 57000 Metz, France ² Université de Bourgogne Franche-Comté, CNRS, ICB, 21000 Dijon, France ³ Université de Lorraine, LCP–A2MC, 57000 Metz, France

Synthèse électrochimique en milieu liquide ionique de nanostructures thermoélectriques 1D base Tellure à faible conductivité thermique

Contrôle de la morphologie des nanofils de Tellure par modulation des conditions de synthèse

Comportement optique par ellipsométrie spectroscopique : premiers résultats

Conclusion Perspectives

- Synthèse de nanofils monocristallins de tellure sans contamination de surface
- Accès à des hauts facteurs de forme > 1800
- Pics d'absorption influencés par le diamètre et la longueur des nanofils
- Analyse de suspension de nanofils en électrolytes par spectrophotométrie d'absorption et/ou par ellipsométrie UV-visible
- Mesures ellipsométriques dans l'IR : accès aux paramètres électroniques sans contact tels que la conductivité ($\varepsilon = \varepsilon_{\infty} + i \frac{\sigma}{\varepsilon_{\infty}}$)
 - à partir du modèle de Drude modifié, étendu du THz
- Extension à la fonctionnalisation de surface, étude des états de surface

